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Abstract

A This paper proposes the use of VLSI technology to perform relational database operations

directly in hardware. It is shown that relational computations, such as intersection,
remove-duplicates, union, join, and division, can all be pipelined elegantly and efficiently on
networks of processors having an array structure. These (systolic) processor arrays are
readily and cost-effectively implementable with present technology, due to the extreme
simplicity of their processors, and the high regularity of their interconnection structures.
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SECTION 1 INTROOUCTION ' 1

1. Introduction

LSI technology allows tens of thousands of devices to fit on a single chip; VLSI technology
promises an increase of this number by at least one or two orders of magnitude in the next
decade. This paper proposes one method of exploiting this technology advance: the
construction of special-purpose VLSI chips for relational database operations. These
special-purpose chips are to be attached to a convenlional host computer, or used as &
cOmpOngnt in a larger spécial-purpose system, such as a database machine. (W;suggest one ™

such database machine at the end of this paper.) o

1

In [5] a structure éalled a syslolic array* is proposed for implementation in VLSI. These

arrays of processors have the following desirable properties:

1. They can be desngned and implemented with only a few ditferent types of simple
cells.

2. The array’s data and control flow is simple and regular, so that cells can be
connected by a network with local and regular interconnections. Long distance
or irregular communication is not needed.

3. The array uses extensive preluung and multl.proces.ung, Typically, several data
streams move at constant velocity, over fixed paths in the network, mteractmg

where they meet. In this fashion, a large proportion of the processors in the

array can be kept active, so that the array can sustain a high rate of data flow.

VLSI designs based on systolic arrays tend to be simple (a consequence of property 1), A
modular (property 2) and of high performance (property 3) -- for more discussion of the
attractiveness of the systolic array approach, see [3]. In the present paper we illustrate the

use of systolic arrays In performing relational database operations.

In secti‘onA 2 we give details concerning the notion of systolic arrays, and present some
concepts and notation for discussing relational database operations. In section 3, we describe
the basic building block of several of our systolic arrays: a systolic processor array to
compare two tuples. Section 4 includes a detailed systolic example: an array to rapidly
perform the intersection (or difference) operation on two relations. In sectior 5 we use an

array identical to the intersection/difference array, to remove duplicates from acollection of

1The word “systolo” was borrowed from physiologists, who use it to refer to the rhythmically recurrent
contractions of the heart, which pulse blood through the body. For a sysiolic srray, the aclion of a cell or processor is
analégous to that of the heart. Each cell rogularly pumps data in and oul (performing some short computalion before
each "contraction™), so that o regular flow of data is kept up in the network. M: 1y systolic arrays have been designed
recently, snd are surveyed in {7}
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tuples, and to perform the operations of union and projection on relations. In sections 6 and
7 we detail relational operations (join and division) that are substantially different from the
intersection-like operations, but still lend themselves to simple implementation with systolic
arrays. Section 8 remarks on some implementation and performance aspects of the systolic
arrays proposed in this paper. Section 9 discusses the architectural issues of an integrated
system capable of using many types of systolic arrays.
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2. Systolic Arrays and Relational Database Considerations

2.1 Systolic Arrays

Regular geometric structures are typically used in systolic arrays. For the present paper

we ‘use predominantly orthogonally and linearly connected arrays of processors (both of .

which are shown in figure 2-1), although hexagonally connected arrays as in [5] would work
as well in many instances. '

Al

oon TTTTTT

N I
(a) (b)

Fi'gura 2-]: Orthogonally and linearly connected processor arrays.

We find that these arrays facilitate many relational database operations by allowing swift
interaction among the tuples of two relations, with a set of temporary results also traveling
through the array. Typically, the relations move top-to-bottom and bottom-to-top, and the
temporary results move left-to-right. All of the data in the array moves synchronously. As a
piece of data passes through a processor, it may have some computation performed on it;
then it is passed on to the next processor. The final results of the array are sent out a side
of the array.

2.2 Processors

In figure 2-2 we show the prototype for the processor used in the orthogonally or linearly
connected systolic structure. The processor has three input lines and three output lines. For
each "pulse” of the systolic array, inputs come in on the input lines, and outputs leave the
processor on the output lines. In the intervening time, all of the work (computation) of the
processor is performed -- the processor computes some simple transformation on the data

which it has just received, in preparation for shipping it out at the next pulse. VLSI arrays

-

A
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Figure 2-2: Orthogonal and linear processor prototypes.

are greatly simplified if most processors in the array are identical. This is the case for the
arrays presented in this paper. Given the orthogonaily or linearly connected array structure,
and the processor prototype described here, it is the algorithm actually executed by each
processor that determines the function of the array. Therefore, to define a systolic array to
perform a specific relational operation, we specify the algorithm for the processors in a
systolic array. The sections below consist of such specifications and an explanation of how
they actually produce the desired resuit,

2.3 Representation of Relations

In the following discussion, we assume some familiarity with the basics of relational
database theory (see, for exampie, [I, 2]). A relation is a set of tuples. Each tuple consisfs
of an ordered sequence of elements. It is these elements that are fed through our systolic
arrays. The tuples in a relation, however, are not necessarily ordered in any particular
fashion.

In a relation, an element can be of any data type: an infeger, a boolean value, a string, etc.
We wish to give all of these a uniform representation, in order to simplify the design of
systalic arrays to process relations. The assumplion we make is a common one in the
implementation of relational database systems. We assume that the elements from any
particular column in a relation are selected only from one underlying domain. Each member of
the domain is uniquely and reversably encoded into an integer. These integer encodings are
the form in which the elements are stored in the relations, and the list of encodings is stored
separately. Whenever necessary, the integers are decoded into the appropriate value;
however, encoding and decoding are usually only necessary for input or output: that is, for
use by humans. Most relational operations are logically the same whether they operate on
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integers or, say, strings or calendar dates. Since -- for our purposes -- integer operations
are more convenient, we assume that relations are slored as tuples of integers (and we are

1

not concerned with encoding and decoding).

2.4 Union-Compatibility

Certain relational operations such as union and intersection can only be performed
between relations that are union-compatible. Two relations are said to be union-compatible
if the following two conditions hold:

-»":,"" - They have the same number of columns (and thus tuples from the two relations
have the same number of entries).

! - Corresponding columns from the two relations have entries drawn from the same

underlying domain.
This definition is an attempt to capture the informal notion that a tuple from one relation
could legally be a member of the other relation, in that the respective columns of the two
relations are defined on the same domains. ‘

2.5 Muiti-relations

A multi-relation Is an extension of the concept of a relation in which duplicate tuples are
allowed. (This is by analogy with the term "multi-set,” since a relation can be viewed as a
set of tuples.) This is a notion that we will find useful later in the paper. Multi-relations are
usually generated as the intermediate resulls of relational opcrations. For example, suppose
we remove a few columns from a relation (which is the projection operation). The
intermediate construct we obtain before we remove duplicate tuples to produce the new
(resulit) relation is a multi-relation.

2.6 Notation

We briefly summarize the notation used in the remainder of the paper. Relations and
~' multi-relations are denoted by capital letters: A, B, C. Tuples that are members of these are
‘\5: denoted by subscripted lower-case letters. The ith tuple of A is denoted by a;, or by a,€A, it

SN
-

" -we wish to indicate membership. In turn, elements in tuples are double-subscripted: ; is

[3
letter n is usually used to denote the number of tuples in a relation (the cardinality of the

the kth element of a; and the whole tuple can be exhibited as a; = <a; 118 2rBim> The

relation, since a relation is a set): |A| = n. The letter m usually designates the number of
elements in a tuple in the relation in question.
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Letter T represents a boolean matrix that contains results of logical operations. The
(i,))-th entry of T, t‘-j, is usually used to denote the result of a comparison between the ith
tuple of a relation and the jth tuple of another. Where we wish to display the formation of
t;; over time, we use the notation tf; for the resuit after the kth time step; 1l ang tfinal
denote specitic instances (the first and the last) of tﬁ‘, (When no confusion will thereby
resuit, we use the same notation t‘-j to refer to t:.‘jfor a;wy k.) Finally, the notation t; is used
to designate the result of some logical operation on all of the members of the ith row of T,
for exémple, the OR or AND of t,,, for all k.
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3. Arrays for Tuple Comparison

" In several of the relational operations described below, it is necessary to test for equality
between a pair of tuples, one from each of two relations. (Two tuples, e,¢A and be, where
A and B are union-compatible relations or multi-relations, are said to be equal if and only if
element a;; equals element bjk for 1 < k £ m.) For example, in the intersection operation,
the intersection of two relations, say A and B, consists of those tuples which are in both A
‘and B. Forming this intersection, then, requires many tests for equality between tuples, a; €A
and bI(B. In this section, we first describe a linear systolic array of processors capable of
performing one such comparison. We then combine many copies of this basic structure to
form a two-dimensional systolic array that can pipeline many tuple comparisons.

3.1 Linear Comparison Array for Performing One Tuple Comparison

Do
ot oit
LR RS
tr

Figure 3-1: Tuple comparison array.

A tuple comparison can be done by the linear array of brocessors in Figure 3-1. A single
processor from the array is shown in more detail in Figure 3-2. ‘One can see that the
processor array in Figure 3-1 is able to compute the AND of the comparison results from all
of the individual element comparisons. More precisely, at each step the kth processor (from
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Figure 3-2: Individual comparison processor.

the left) in the array compares the two elements a; and bjk» and outputs on its output line
tOUT the AND of this comparison result with the input to the processor on input line tpy
(which is the output of the (k-1)st processor)., Thus, if the input to the left-most processor is
the value TRUE, then, by induction, after m time steps the output at the right-most processor
of the processor array will be a bit indicating whether the two tuples are equal. That is, this
output will be TRUE if and only if all of the comparisons of individual elements prcduced
TRUE. (Notice also that if the initial input is FALSE, then the output at the right side of the
array is guaranteed to be false. Surprisingly, this fact will be useful in later sections of the
paper.)

To make this all work, all of the data must be in the right place at the right time. This is
why the inputs to the individual processors are "staggered” (as sho'wvn by the "slanted” input
tuples in figure 3-1) so that elements o, and b/-k arrive at the kth processor and are
compared at the kth time step. Also at that time the AND of the results of previous
comparisons arrives at the same processor, so that it can be ANDed with the new comparison
result at the processor.

We summarize the function of the linear comparison array shown in figure 3-1. This array
compares two tuples (presumably one from each of two relations), and forms the result of the
comparison by propagating intermediate versions of that result to the right through the
array. By staggering entries from the tuples one can assure that the output from the
right-most processor of the array will be the result of the equality test on the two tuples.
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3.2 Twvo-Dimensional Comparison Array for Pipclining Many Tuple Comparisons
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Figure 3-3: Two-dimensional (orthogonal) comparison array.

We concatenate, vertically, several of the linear comparison arrays described above, to
form a 2-dimensional processor array, as shown in Figure 3-3. This orthogdnally connected,
2-dimensional processor array can perform many tuple comparisons in parallel. To
accomplish this, we feed the relations A and B inlo the array, from the top and bottom,
respectively.

- We feed the relations at times such that the clements of any given tuple, say a

are "staggered,” so that the element a; enlters the array one time step before

. the element Q; ki This has the effect of staggering the inputs to each of the

component linear arrays, so that it will perform exactly as the smgle linear array
described above.

- We pipeline tuples in each relation through the orthogonal processor array, in
such a way that each tuple is two steps behind the tuple that preceeded it into
the array. This assures that any particular pair of tuples a;¢A and b 4B will

" eventually cross each other. More specificaily, first a; | will meet bj,, in the
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left-most processor of some row in the processor array. These two elements
will be compared, and the result of this comparison will be ANDed with the initial
input to that row of processors (TRUE for our present purposes). At the next
time step, as the tuples ripple through the array, element a; 5 will meet 6,

the processor to the right, in the same row. They will be compared there, and
the result of the comparison will be ANDed with the output from the first
processor to produce the output of the second processor. Processing continues
in this fashion, and the intermediate boolean result of the ANDs propagates to
the right through that particular row of processors, until -- as discussed above
~- the right-most processor outputs a boolean value that indicates whether tuple
a; equals tuple bj.

In Figure 3-4, the t;; represent intermediate values for the results of comparing tuples a;
with tuples b/ (Note that in the figure, the initial value for t3.3 is just about to enter the
processor array.)

3.3 Matrix Notation

For convenience in discussion, we express the results produced by a comparison array in
the form of a matrix T. The elements of the matrix are defined as follows:

| TRUE it il TRUE, and ayy=b i for all Lsksm,
¢ | FALSE otherwise.

We see that it is these t that are produced at the right-most column of the array described
in Section 3.2.

In the following sections, we add additional processors which manipulate these t; s after
they leave the comparison array. These manipulations will be shown to produce the
equivalent of relational operations.
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Figure 3-4: Data moving through. the comparison array.
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4, Arrays for Intersection ~- A Detailed Example

In the preceding secﬁc.:n, we saw how we could use a systolic comparison array to quickly
do pairwise comparisons on sets of tuples. The results of these comparisons (ti.j) are sent
out from the right side of the array. By examining a particular relational operation, namely
intersection, in some detail, we illustrate how these individual results are combined in
applications.

4.1 The Intersection Operation

Consider the operation of finding the intersection of two union-compatible relations
C=AnB

The relation C consists of those tuples that are in both relation A and relation B. This is
exactly the same as finding those tuples in A which are also in B. Thus we need only examine
the ltuples in A for membership in B. This is the basis for our “intersection array.” We
compare each tuple oA pairwise with each tuple bI(B. For each a; if a; matches some bj,
then a; is @8 member of the intersection. This is where the comparison array described in the
preceeding section comes in handy.

4.2 The Intersection Array

The intersection array for performing the intersection operation consists of a
(two-dimensional) comparison array on the left and a (linear) accumulation array on the right
(see figure 4-1). The comparison array performs comparisons between tupies in A and tuples
in B, to produce the matrix T, whereas the accumulation array accumulates t‘-'j to form:

t; = ORlstn t,;,- (4.1)
One can easily see that a tuple a;¢A is a member of the intersection, i.e. a; matches some

[3
be, if and only if t; is true.

Figure 4-1 illustrates how the intersection array computes the intersecﬁon of two 3 x3
relations. Processors in the accumulation array are called accumulation processors; their
function is as follows. At each time step, an accumulation processor takes its left input (some
'U from the comparison array), OR’s that with the top input (some t), and passes on the
result as its output (the updated t) to the processor below. More specitically, a t; is formed
in the accumulation array in the following manner. First ti,l reaches an accumulation
processor from the comparison array on the left. At the next time step, this value is sent to
the accumulation processor below. During the same time step, ti,2 is sent into that
accumulation processor from the left, and is ORed with ti,l' Similarly, at the next time step,
the resuit of this OR is sent down one processor, and is ORed with t"3. which is just arriving
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Figure 4-1: Intersection array, consisting of two modules:
(2-dim) comparison array on the left, and (1-dim) accumulation array on the right.

from the left. In an implementation, the first accumulation processor can be identical in

function to the others, provided we initialize the value moving down through the accumulation

array as FALSE (i, t"%l o FAISE; in the figure, tg is about to enter the array with its

initial value). This value is successively ORed with all of the t;, for all k, and when it leaves

the bottom of the accumulation array, it takes on the value t,, specified in equation (4.1). This
. 1; designates whether a; is a member of the intersection C, and it is then a simple matter to
" use the t;’s to generate G from A.

7 At any time step, accumulation processors that aren’t busy (i.e. that have no t‘-j coming in
from the left) simply pass on the 'i. that they have. It takes less than the length of the
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accumulation array to produce a t;, but different t; are produced in different sub-arrays.

4.3 Remark

We have illustrated the use of the so-called accumulation array at the right of the
comparison array to implement a desired relational operation, namely, the intersection
operation. In general, as shown in the rest of the paper, only simple changes in the
accumulation array or in the input data are required to alter the output of the array to
produce other useful functions. The main “hardware” -- the comparison array -- is
sufficiently general that it need not be changed at all.

As an illustration, we see that after a slight modification the intersection array can be used
to ‘perform the difference operation on two relations. The difference, C, of two
union-compatible relations A and B, denoted C = A - B, consists of those tuples that are
members of A, but are not members of B. When we cbmpute the intersection with the
intersection array, we notice that t, is TRUE for any tuple a; that is in both A and B (i.e,
A n B). We can also see that t, is FALSE for any a; that was in A, but nrot in B, which is
precisely the condition for a; being in the difference. Therefore, to form A - B, we can use
the intersection array, with the modification that the tuples in the resulting relation
correspond to those t;’s which are FALSE, instead of TRUE. (Alternatively, we could just put
an inverter on the output line of the accumulation array.)
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5. Arrays for Removal of Duplicate Tuples

The operation remove-duplicates transforms a multi-relation (defined in section 2.5), A, into
a rélation, A’, which contains all of the tuples in A, except that no tuple is duplicated in A’
The systolic array used for intersection in the last section can also be used for the operation
remove-duplicates. Instead of comparing relation A to relation B,"w'e compare relation A to
itself, by feeding it into both the top and boltom of the array. (Note that A is
union-compatible with itself.) By doing so, we produce a matrix, T, whose elements are:

| TRUE it tialTRUE, and aj=a j for all 1<kem,

ij .
| FALSE otherwise.

Our strategy for eliminating duplicate tuples from A is to remove all tuples that are
preceeded by another tuple that equals it. For example if tuples ag, agg, and ay3 are all
equal, then in producing A’, we wish lo remove ajg and a;3 from A, leaving ag in A* (not
necessarily as aj because, for example, ay might equal a,). In our matrix notation, the
problem is then that of removing any tuple a,, where there exists a t‘-jsTRUE, for j<i. This is
equivalent to saying that we wish to remove any tuple corresponding to a row in the matrix T
which contains a "TRUE" in the lower triangle (left of the main diagonaf). We could find the
appropriaté a; by ORing across each row of T, as far as (but not including) the main diagonal.
Alternatively, we could set the main diagonal and the upper triangle all to FALSE, and then
take the OR across the whole row. This second scheme is what we will do. '

For those t‘-j on the main diagonal and in the upper triangle {i<j), we set tf}md to FALSE.
This implies that t‘-j will be FALSE for i<, since the comparison array works by ANDing each
individual comparison result with the current value of t‘-j. The accumulation processors in the
remove-duplicates array act Identically to those in the intersection array. They form the OR
of each row of the matrix T. To produce A’, we eliminate from A any row where the resulting
t; is TRUE, and keep the rest. (This is the opposite of the intersection operation, where we
keep those rows with TRUE t,).

(jur remove-duplicates array can be used to implement the following relational oparations:

-7 Union  _
=

The union C = A u B of two union-compatible relations, A and B, is the relation containing
all tuples in either A or B, without duplicates. It is straighiforward to form A u B by applying
the remove-duplicates operation to the concatenation A+B of A and B:

C = remove-duplicates(A + B).
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In practice, this means that we first form the concatenation of A and B as we retrieve them.
We then put the concatenation through both sides of the remove-duplicates array, and what
comes out is a bit-string, indicating which tuples of the concatenation should be in the union.

Projection

The projection operation is similarly easy, with our remove-duplicates operation. We speak
of the pfojecﬁon of a relation A aver a column, or list of columns, £ (Usually, fis of the form
“first column, second column, fifth column,” or "name column, salary column, children column.”)
The projection is produced by first finding for each tuple a;(A, the corresponding (smaller)
tuple a; p which contains only those columns from a; that have been specified in f - this can
be done conveniently during the time when the original tuples are retrieved from storage.
The set Af ~- a multi-relation in general -- of the resulting smaller tuples is then transformed
into a relation by removing duplicate tuples. This is precisely the function performed by our
remove-duplicates array. (Duplicates may occur in Af since we are taking the projection of a
relation which may contain tuples that differ only in columns that are not in £.)
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6. Arrays for Join

6.1 The Join Qperation

We illustrate the join operation by describing a special case: the join over a single column.
The more general case is sketched later in this section. The join, C, of two relations, A and B,
over columns Cp and Cg, respectively, is written C = A J{CA'CB} B. The join, C, is the set of
tuples, ¢, such that ¢, = a; (CaCal b/-, where a‘:'CA = bf'CB' for a;¢A and bl(B. (For the join
to be well-defined, columns Cp and Cg must be drawn from the same underlying domain.)

The operator "|,r_ is defined to be the concatenation of its two arguments, with the

Ced

exception that o;\T;\g}%’ of a‘-,CA and b is included in the concatenation.?

/)CB

Intuﬂively, we check all pairs of tuples, a; and bj, taken from relation A and B,

i
respectively. Where they match in the columns specified by Cp and Cg, we concatenate the
two tuples. After removing one of the two matching columns (to eliminate redundancy), we

add the concatenation to the join, relation C.

6.2 The Join Array

We can formulate the results of a join again in terms of a matrix. Let the matrix T be
defined as

t | TRUE if a’i,CA - bj.CB
¢ . | FALSE otherwise.
That is, 'U is true if and only it e; and bj match in the specified columns.

If we have the matrix T, it is straightforward to generate the relation C. For each t‘-j that
has the value TRUE (and for only those 'ij)' we simply relrieve a; and bj. and concatenate
them, removing the redundant column. The size of the join, |C|, might be as large as the
product |A||Bl. (This happens in the degencrate case where all tuples in A match all tuples in
B in the specified columns.) However, for most applications the number of TRUE t‘-_j‘s inTis

- far less than this product. Therefore, we can usually generale C fast, provided we can

‘;Eroduce T quickly. A fast way of producing T is the concern of this section.

Consider the linear array of processors in figure 6-1. We use this array to produce the

zAduoﬂy. suthors differ as lo whether the redundant column appears in the join. For example, Dale (2] includes it,
but Codd’s original peper (1] omils it.

]
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. Figure 6-1: Join array.

matrix T. The column CA of relation A (column 3 in the example in the picture) is input to the
processor array from its top, and moves down. Similarly, the column CB of B (column | in the
example) is sent through the array from bottom to top. As the two columns "pass through”

each other, each % Ca will meet each b (We send the columns through the array in such

a way that each element follows its predecessor after two time steps so that all pairs of

ac A and b /"CB meet.) When a;C A

the value of t‘l‘ These t‘-j are collected at the right of the array. (In the figure, the tU are

meets b /"CB' a simple comparison suffices to determine
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shown coming cut from the array.) Unlike some of the operations discussed earlier, here we
are interested in the tij individually, and do not perform further accumulation operations on

them.

6.3 General Case

6.3.1 Join Over More Than One Column

In the general case, Cp and Cg specify more than one column. Their specifications are
constrained in the following way:

- the number of columns specificd by Cp must be the same as that specified by
' CB' and -

- the respective columns in the specifications must be .based on the same
underlying domains {up to a permutation; which can easily be handled).

Givren this, ¢y (= ai'{CA,Cg}bj) CConly if °i,CA = bj’CB' which means that tuple a; must match

tuple bj in all of the columns specified by Cp and Cg. The concatenation operator "'{C C }"
As

is defined analogously: the concatenation includes only one copy of the columns over'WhuBch

A and B are being joined.

The corresponding modification to the processor array in figure 6-1 is simple, Instead of
having one column of processors in the array, we have several columns: one for each
reléfional column over which A and B are to be joined. Each processor column is responsible
for comparing a; and bj in some particular column pair, and the resuit tu is propagated to the
right, in essentially the same way as in the intersection array. When they reach the right
side of the processor array, the tij’s are used directly, without an intervening accumulation

array.

6.3.2 Non=-Equi-Join

o The join operation we have been considering so far in this section is usually referred to as
the equi-join, since the join is performed on tuples for which the values in columns Cp equal

_— those in columns Cg. This nolion can be generalized to allow any sort of binary comparison
(e.g. s, >, etc.) to be done between .the relevant columns of the two tuples.

The processor array to perform such an operation is easy to construct. For
greater-than-join, say, processcrs in the array would simply perform that comparison
between Cp and Cg. The particular operalion to be performed might be encoded in a few

bits, and passed along with the a;; and t,. Or, it might be preloaded into the array of
ij o :
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processors. This illustrates that some degree of programability can often be provided to a
processor array at the expense of additional logic.
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7. Arrays for Division

Division is an operation betwecen two relations (the dividend and the divisor) which
produces another relation (the quotient) as its result. The notation "C = A ,{CA Cg) B"
means that C is the result of dividing A by B over the columns Cp of A and Cg of B.

We show hdw to perform the division operation by a processor array for a restricted case
of division: A is a binary relation and B is a unary relation. Further, Cp and Cg specify only
single columns. The extension from this to the general case is straightforward (as in the
preceding section on the join). '

Let the dividend A have columns A} and Ay and let the divisor B have column By, and let
A, and B) be defined on the same underlying domain (which makes their elements
comparable). Then the divide operation C = A ?AZ'BI B produces a quotient C, having
column Cl defined on the same domain as Aj; a value z will appear in Cl if and only if the
pair (z,y) appears in A for every value y appearing in By [2] An example of the division
operation is shc?wn in figqre 7-1.
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Figure 7-1: Example of relational division

=" Our systolic array for performing relational division consists of two modules: a dividend

‘_ array and a divisor array. Figure 7-2 illustrates how the division array works on the

-

~“example given in figure 7-1. The left-hand column of the two columns of processors in the
dividend array stores (distinct) elements appearing in column Al' one element to a processor.
(These elements -- {i, j, k} for this example -- can be identified by the remove-duplicates
array.) Similarly, elements appearing in the divisor B, are preloaded into each row of
processors in the divisor array. In the figure, circled elements represent those elements
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Figure 7-2: Division array (in operation).
whiph are stored at processors.

The dividend array computes for each element z appearing in Al the set of y such that
(z,y)¢A. It works as follows. We take each pair (2,y)(A, and pass it into the dividend array
from the bottom; the z into the left column and y into the right column. At each time step,
the z will be in the same processor as some preloaded element %, and the y will be following
one step behind'it, in the column to the righl. We compare z to =z, and if they match, we
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output a TRUE from the right side of the processor; otherwise, we produce a FALSE. This
boolean value t arrives at the processor in the right column, just as the associated y arrives
there. If t is true, then y is output from the right side of the processor. Otherwise, some
null value.is output.

Thus for each xz appearing in A, the non-null values, output from the dividend array at the
row whose left processor has z stored, are those y’s such that (z,y}XA. We see that if these
y's include all the elements in By, then z belongs to C;. This is checked by the
corresponding row of processors, in the divisor array, which takes the y’s as inputs. More
precisely, each processor of the row checks if the element it is storing matches any of the
y’s passing from left to right along the row. If every processor of the row finds at least one
such match (which is checked by doing an AND across the row after the dividend passes
through the array), then the y's contain a, b, ¢, and d, and thus z belongs to Cy. This is the
essential idea behind the division array. One can already see that the division array provides
the same kind of rapid compulations (using simple and regular structures) as other arrays
discussed earlier.
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8. Remarks on Implementation and Performance

During the past year, we have designed prototypes of several special-purpose chips at
~ CMU. These include a pattern-match chip [3]), an image-processing chip [6], and a tree
processor for database applications [9] The pattern-'match chip can be viewed as a
scaled-down version of the comparison array in Section 3. (This chip has been fabricated,
tested, and found to work.) The following comments and projections are based partly on our
experience with the pattern-match chip.

In some of the schemes presented in this paper, it is the case that only half of the
processors in a systolic array are busy at any one time. This inefficiency can be avoided in
the following implementation: rather than marching two relations against each other along
the systolic array, we let only one relation move while the other remains fixed. Also, for
simplicity, we have so far assumed that processors in systolic arrays operate on words. In
implementation, each word processor can be partitioned into bit processors to achieve
madularity at the bit-level. A transformation of a design from word-level to bit-level is
demonstrated in [3] In general, many variations on the systolic arrays suggested are
possible. All of these are equivalent, and differ only in implementation details.

Below, we give figures for a reasonable array size for implementation. While such an
array would be large enbugh far many applications, it is also possible to use the array to
solve problems that will not fit entirely on it. This calls for the technique of decomposing
problems. The technique is best illustrated by a simple exampie. In the intersection problem,
consider fhe matrix, T, of resuits. For a large problem, one can simply partition this matrix
into sub-problems small enough to fit on the array; each of these sub-problems ‘would
generate a piece of the matrix.

Intersection is one of the most computationally demanding relational operations, since it
requires full tuple comparisons between all possible pairs of tuples. We examine the speed
with which systolic arrays can perform intersection.

We make the following assumptions concerning the size of a typical relation:

- A tuple is of size 1500 bits (or about 200 characters).

- A relation is of size 104 tuples.

The following (conservative) estimates are typical of results that have been achieved with
present NMOS technology:
- A bit-comparator, the fundamental workhorse unit of our arrays, is about

2404 x 1504 in area. The comparison is performed (very conservatively!) in
about 350ns, including time for on-chip and off-chip data transfer.
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- With present technology, chips are about 6000 x 6000u in arca. Division gives
us about 1000 bit-comparafors per chip. (Notice that this calculation is realistic
only if the design is repetitively regular, which is the case for our systolic
arrays.) We can assume that none of the comparators on a chip incurs delay due
to pin limitations; since the time for a comparison is large relative to off-chip
transfer time (<30ns), we can multiplex about 10 bits on a pin during a single
comparison.

- It is practical to construct devices involving a few thousand chips. We assume

1000 chips. This gives us the capability of performing 106 comparisons in

parallel.
Based on these assumplions, we can make lhe following performance predictions for
intersection. The intersection requires a total of 1.5 x 10!l pit comparisons, since we need
1500 bit-comparisons for each of the (109)2 tuple comparisons. The time to perform
intersection, therefore, is: '

(1.5 x 10! Lcomparisons) x (350ns / 108comparisons),

which is about 50ms. We believe that this estimate is extremely conservative, even with
existing technology. If we assume instead, for example, 200ns/comparison, and 3000 chips,
we derive a figure of about 10ms. '

The processing speed obtainable from these systolic arrays can keep up with the data rate
achievable with the fast mass storage devices available in present technology. For example,
a moving-head disk rotates at about 3600 r.p.m, or about once every 17ms. Assume that we
can. read an entire cylinder in one revolution, as in some of the proposed database machines
(for a survey of these machines, see [4]). This is a rate of about 500,000 bytes in 17ms. In
a comparable period of time, our systolic array can process (for example, can intersect) two
relations, each of about 2 million bytes. '
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9. Remarks on the Organization of an Integrated Systolic System

Systolic arrays introduced in preceeding sections are capable of rapid processing of
individual relational database operations. To process all of the operations required in a single
transaction or a set of transactions, an integrated system containing several systolic arrays is
needed. Many strategies are possible for the interconnection of the systolic devices. To
decide which interconnection strategy to choose, one must consider the system requirements:

- High capacity for data transfer. As described in the last section, it is feasible

that a systolic array may process hundreds of thousands of bytes per
millisecond.

- Flexibility and generality. The execution order of systolic devices varies greatly
from one transaction to another transaction. Relations may have to be
decomposed to fit the (fixed) sizes of systolic arrays. Results from subrelations
must be stored outside the systolic arrays before they are finally combined.

One organization that seems to match the system requirements is the crossbar switch
interconnection depicted in Figure 9-1. Typically, the system works as follows. Initially, the
relevant relations are read from disks into memories. (Disks with “logic-per-track”
capabilities [8) can of course be incorporated into the system, so that some simple queries
never have to be processed outside the disks.) Then the crossbar switch is configured so
that the relevant memories are connected to the systolic array that will perform the first
operatioh of the transaction in question. The data is pipelined from the memories through the
switch and through the processor array. The output of the array is pipefined back into
ancther memory. This is repeated for each relational operation in the transaction. Due to
the crossbar structure, several operations may be run concurrently., The final results are
eventually returned to the disk (or a user’s terminal, or printer, etc.) from the memory in

which they reside.

In the future, we plan to perform a detailed analysis of the crossbar scheme and a
comparison of this scheme with other alternative structures. For example, Song [9] has
suggested the use of a tree machine for database applications. The leaf nodes of the tree
machine are responsible for data storage, and for a limited amount of processing of the data.
The tree structure itsetf is used to broadcast instructions and data, and to combine results of
low-level computations. on the data. This same tree machine is capable of performing all
database operations. A detailed comparison of these and other database machine structures
s needed in order to understand their relative merits.
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Figure 9-1: Systolic database system using crossbar switch.
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